{ "id": "0712.4137", "version": "v2", "published": "2007-12-26T20:14:16.000Z", "updated": "2008-06-22T02:36:24.000Z", "title": "Uniqueness for the martingale problem associated with pure jump processes of variable order", "authors": [ "Huili Tang" ], "categories": [ "math.PR" ], "abstract": "Let $L$ be the operator defined on $C^2$ functions by $$L f(x)=\\int[f(x+h)-f(x)-1_{(|h|\\leq 1)}\\nabla f(x)\\cdot h]\\frac{n(x,h)}{|h|^{d+\\alpha(x)}}dh.$$ This is an operator of variable order and the corresponding process is of pure jump type. We consider the martingale problem associated with $L$. Sufficient conditions for existence and uniqueness are given. Transition density estimates for $\\alpha$-stable processes are also obtained.", "revisions": [ { "version": "v2", "updated": "2008-06-22T02:36:24.000Z" } ], "analyses": { "subjects": [ "60J75" ], "keywords": [ "martingale problem", "pure jump processes", "variable order", "uniqueness", "pure jump type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.4137T" } } }