{ "id": "0712.3882", "version": "v2", "published": "2007-12-22T22:13:13.000Z", "updated": "2008-01-11T00:46:02.000Z", "title": "Arithmetic progressions in sets of fractional dimension", "authors": [ "Izabella Laba", "Malabika Pramanik" ], "comment": "42 pages", "journal": "Geom. Funct. Anal. 19 (2009), 429-456", "doi": "10.1007/s00039-009-0003-9", "categories": [ "math.CA", "math.NT" ], "abstract": "Let $E\\subset\\rr$ be a closed set of Hausdorff dimension $\\alpha$. We prove that if $\\alpha$ is sufficiently close to 1, and if $E$ supports a probabilistic measure obeying appropriate dimensionality and Fourier decay conditions, then $E$ contains non-trivial 3-term arithmetic progressions.", "revisions": [ { "version": "v2", "updated": "2008-01-11T00:46:02.000Z" } ], "analyses": { "subjects": [ "28A78", "42A32", "42A38", "42A45", "11B25" ], "keywords": [ "arithmetic progressions", "fractional dimension", "probabilistic measure obeying appropriate dimensionality", "fourier decay conditions", "hausdorff dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.3882L" } } }