{ "id": "0712.3637", "version": "v3", "published": "2007-12-21T07:56:11.000Z", "updated": "2013-10-30T02:08:11.000Z", "title": "On Lusternik-Schnirelmann category of SO(10)", "authors": [ "Norio Iwase", "Kai Kikuchi", "Toshiyuki Miyauchi" ], "comment": "28 pages, 4 figures", "categories": [ "math.AT" ], "abstract": "Let $G$ be a compact connected Lie group and $p : E\\to \\Sigma A$ be a principal G-bundle with a characteristic map $\\alpha : A\\to G$, where $A=\\Sigma A_{0}$ for some $A_{0}$. Let $\\{K_{i}{\\to} F_{i-1}{\\hookrightarrow} F_{i} \\,|\\, 1{\\le} i {\\le} n,\\, F_{0}{=} \\{\\ast\\} \\; F_{1}{=} \\Sigma{K_{1}} \\; \\text{and}\\; F_{n}{\\simeq} G \\}$ be a cone-decomposition of $G$ of length $m$ and $F'_{1}=\\Sigma{K'_{1}} \\subset F_{1}$ with $K'_{1} \\subset K_{1}$ which satisfy $F_{i}F'_{1} \\subset F_{i+1}$ up to homotopy for any $i$. Our main result is as follows: we have $\\operatorname{cat}(X) \\le m{+}1$, if firstly the characteristic map $\\alpha$ is compressible into $F'_{1}$, secondly the Berstein-Hilton Hopf invariant $H_{1}(\\alpha)$ vanishes in $[A, \\Omega F'_1{\\ast}\\Omega F'_1]$ and thirdly $K_{m}$ is a sphere. We apply this to the principal bundle $\\mathrm{SO}(9)\\hookrightarrow\\mathrm{SO}(10)\\to S^{9}$ to determine L-S category of $\\mathrm{SO}(10)$.", "revisions": [ { "version": "v3", "updated": "2013-10-30T02:08:11.000Z" } ], "analyses": { "subjects": [ "55M30", "55P05", "55R10", "57T10" ], "keywords": [ "lusternik-schnirelmann category", "characteristic map", "determine l-s category", "compact connected lie group", "berstein-hilton hopf invariant" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.3637I" } } }