{ "id": "0712.3478", "version": "v1", "published": "2007-12-20T15:55:06.000Z", "updated": "2007-12-20T15:55:06.000Z", "title": "The Kadets 1/4 theorem for polynomials", "authors": [ "J. Marzo", "K. Seip" ], "comment": "7 pages", "journal": "Math. Scand. 104 No. 2 (2009) 311-318", "categories": [ "math.CA" ], "abstract": "We determine the maximal angular perturbation of the (n+1)th roots of unity permissible in the Marcinkiewicz-Zygmund theorem on L^p means of polynomials of degree at most n. For p=2, the result is an analogue of the Kadets 1/4 theorem on perturbation of Riesz bases of holomorphic exponentials.", "revisions": [ { "version": "v1", "updated": "2007-12-20T15:55:06.000Z" } ], "analyses": { "subjects": [ "26D05", "30D55" ], "keywords": [ "polynomials", "maximal angular perturbation", "marcinkiewicz-zygmund theorem", "riesz bases", "holomorphic exponentials" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.3478M" } } }