{ "id": "0712.2637", "version": "v3", "published": "2007-12-17T06:26:47.000Z", "updated": "2012-08-17T16:23:09.000Z", "title": "On the Limit Law of a Random Walk Conditioned to Reach a High Level", "authors": [ "Sergey G. Foss", "Anatolii A. Puhalskii" ], "journal": "Stochastic Processes and Their Applications, 1221 (2011), 288-313", "categories": [ "math.PR" ], "abstract": "We consider a random walk with a negative drift and with a jump distribution which under Cram\\'er's change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this random walk converges in law to a nondecreasing Markov process which can be interpreted as a spectrally-positive L\\'evy %-Khinchin process conditioned not to overshoot level one.", "revisions": [ { "version": "v3", "updated": "2012-08-17T16:23:09.000Z" } ], "analyses": { "subjects": [ "60G50", "60G51", "60F17" ], "keywords": [ "high level", "limit law", "random walk converges", "nondecreasing markov process" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.2637F" } } }