{ "id": "0712.2582", "version": "v3", "published": "2007-12-16T16:48:34.000Z", "updated": "2009-07-24T15:06:28.000Z", "title": "Minima in branching random walks", "authors": [ "Louigi Addario-Berry", "Bruce Reed" ], "comment": "Published in at http://dx.doi.org/10.1214/08-AOP428 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2009, Vol. 37, No. 3, 1044-1079", "doi": "10.1214/08-AOP428", "categories": [ "math.PR", "math.CO" ], "abstract": "Given a branching random walk, let $M_n$ be the minimum position of any member of the $n$th generation. We calculate $\\mathbf{E}M_n$ to within O(1) and prove exponential tail bounds for $\\mathbf{P}\\{|M_n-\\mathbf{E}M_n|>x\\}$, under quite general conditions on the branching random walk. In particular, together with work by Bramson [Z. Wahrsch. Verw. Gebiete 45 (1978) 89--108], our results fully characterize the possible behavior of $\\mathbf {E}M_n$ when the branching random walk has bounded branching and step size.", "revisions": [ { "version": "v3", "updated": "2009-07-24T15:06:28.000Z" } ], "analyses": { "subjects": [ "60J80", "60G50" ], "keywords": [ "branching random walk", "exponential tail bounds", "quite general conditions", "minimum position", "th generation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.2582A" } } }