{ "id": "0712.2401", "version": "v1", "published": "2007-12-14T17:35:01.000Z", "updated": "2007-12-14T17:35:01.000Z", "title": "Large Deviations for Riesz Potentials of Additive Processes", "authors": [ "R. Bass", "X. Chen", "J. Rosen" ], "categories": [ "math.PR" ], "abstract": "We study functionals of the form \\[\\zeta_{t}=\\int_0^{t}...\\int_0^{t} | X_1(s_1)+...+ X_p(s_p)|^{-\\sigma}ds_1... ds_p\\] where $X_1(t),..., X_p(t)$ are i.i.d. $d$-dimensional symmetric stable processes of index $0<\\bb\\le 2$. We obtain results about the large deviations and laws of the iterated logarithm for $\\zeta_{t}$.", "revisions": [ { "version": "v1", "updated": "2007-12-14T17:35:01.000Z" } ], "analyses": { "keywords": [ "large deviations", "riesz potentials", "additive processes", "dimensional symmetric stable processes", "study functionals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.2401B" } } }