{ "id": "0712.2365", "version": "v2", "published": "2007-12-14T15:05:49.000Z", "updated": "2008-04-14T14:49:54.000Z", "title": "Ternary cyclotomic polynomials having a large coefficient", "authors": [ "Yves Gallot", "Pieter Moree" ], "comment": "19 pages, 6 tables, to appear in Crelle's Journal. Revised version with many small changes", "journal": "J. Reine Angew. Math. 632 (2009), 105-125", "categories": [ "math.NT" ], "abstract": "Let $\\Phi_n(x)$ denote the $n$th cyclotomic polynomial. In 1968 Sister Marion Beiter conjectured that $a_n(k)$, the coefficient of $x^k$ in $\\Phi_n(x)$, satisfies $|a_n(k)|\\le (p+1)/2$ in case $n=pqr$ with $p0$ there exist infinitely many triples $(p_j,q_j,r_j)$ with $p_1(2/3-\\epsilon)p_j$ for $j\\ge 1$.", "revisions": [ { "version": "v2", "updated": "2008-04-14T14:49:54.000Z" } ], "analyses": { "subjects": [ "11B83", "11C08" ], "keywords": [ "ternary cyclotomic polynomials", "large coefficient", "th cyclotomic polynomial", "sister marion beiter", "beiters conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.2365G" } } }