{ "id": "0712.1785", "version": "v2", "published": "2007-12-11T17:56:01.000Z", "updated": "2007-12-18T15:18:57.000Z", "title": "The set of non-squares in a number field is diophantine", "authors": [ "Bjorn Poonen" ], "comment": "5 pages; corrected minor typos, improved exposition, added reference", "categories": [ "math.NT", "math.AG" ], "abstract": "Fix a number field k. We prove that k* - k*^2 is diophantine over k. This is deduced from a theorem that for a nonconstant separable polynomial P(x) in k[x], there are at most finitely many a in k* modulo squares such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle X given by y^2 - az^2 = P(x).", "revisions": [ { "version": "v2", "updated": "2007-12-18T15:18:57.000Z" } ], "analyses": { "subjects": [ "14G05", "11G35", "11U99", "14G25", "14J20" ], "keywords": [ "number field", "diophantine", "non-squares", "conic bundle", "modulo squares" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.1785P" } } }