{ "id": "0712.1622", "version": "v1", "published": "2007-12-11T00:34:48.000Z", "updated": "2007-12-11T00:34:48.000Z", "title": "Primitive decompositions of Johnson graphs", "authors": [ "Alice Devillers", "Michael Giudici", "Cai Heng Li", "Cheryl E. Praeger" ], "comment": "35 pages", "categories": [ "math.CO" ], "abstract": "A transitive decomposition of a graph is a partition of the edge set together with a group of automorphisms which transitively permutes the parts. In this paper we determine all transitive decompositions of the Johnson graphs such that the group preserving the partition is arc-transitive and acts primitively on the parts.", "revisions": [ { "version": "v1", "updated": "2007-12-11T00:34:48.000Z" } ], "analyses": { "subjects": [ "05C25", "20B25" ], "keywords": [ "johnson graphs", "primitive decompositions", "transitive decomposition", "edge set" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.1622D" } } }