{ "id": "0712.1399", "version": "v2", "published": "2007-12-10T06:24:40.000Z", "updated": "2008-02-21T07:09:26.000Z", "title": "Correlation functions of an interacting spinless fermion model at finite temperature", "authors": [ "Kohei Motegi", "Kazumitsu Sakai" ], "comment": "21 pages, v2: typos corrected, published version", "journal": "J. Stat. Mech. (2008) P02005", "doi": "10.1088/1742-5468/2008/02/P02005", "categories": [ "cond-mat.stat-mech", "math-ph", "math.MP", "nlin.SI" ], "abstract": "We formulate correlation functions for a one-dimensional interacting spinless fermion model at finite temperature. By combination of a lattice path integral formulation for thermodynamics with the algebraic Bethe ansatz for fermion systems, the equal-time one-particle Green's function at arbitrary particle density is expressed as a multiple integral form. Our formula reproduces previously known results in the following three limits: the zero-temperature, the infinite-temperature and the free fermion limits.", "revisions": [ { "version": "v2", "updated": "2008-02-21T07:09:26.000Z" } ], "analyses": { "keywords": [ "finite temperature", "lattice path integral formulation", "equal-time one-particle greens function", "multiple integral form", "algebraic bethe ansatz" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Statistical Mechanics: Theory and Experiment", "year": 2008, "month": "Feb", "volume": 2008, "number": 2, "pages": 2005 }, "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008JSMTE..02..005M" } } }