{ "id": "0712.0788", "version": "v3", "published": "2007-12-05T17:41:33.000Z", "updated": "2009-09-29T05:38:24.000Z", "title": "D-modules on the affine flag variety and representations of affine Kac-Moody algebras", "authors": [ "Edward Frenkel", "Dennis Gaitsgory" ], "categories": [ "math.RT", "math.AG" ], "abstract": "We study the connection between the category of modules over the affine Kac-Moody Lie algebra at the critical level, and the category of D-modules on the affine flag scheme G((t))/I, where I is the Iwahori subgroup. We prove a localization-type result, which establishes an equivalence between certain subcategories on both sides. We also establish an equivalence between a certain subcategory of Kac-Moody modules, and the category of quasi-coherent sheaves on the scheme of Miura opers for the Langlands dual group, thereby proving a conjecture of [FG2].", "revisions": [ { "version": "v3", "updated": "2009-09-29T05:38:24.000Z" } ], "analyses": { "subjects": [ "81R10", "17B67" ], "keywords": [ "affine flag variety", "affine kac-moody algebras", "representations", "affine kac-moody lie algebra", "langlands dual group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.0788F" } } }