{ "id": "0712.0513", "version": "v1", "published": "2007-12-04T13:33:20.000Z", "updated": "2007-12-04T13:33:20.000Z", "title": "Newhouse phenomenon and homoclinic classes", "authors": [ "Jiagang Yang" ], "categories": [ "math.DS", "math.GT" ], "abstract": "We show that for a $C^1$ residual subset of diffeomorphisms far away from tangency, every non-trivial chain recurrent class that is accumulated by sources ia a homoclinic class contains periodic points with index 1 and it's the Hausdorff limit of a family of sources.", "revisions": [ { "version": "v1", "updated": "2007-12-04T13:33:20.000Z" } ], "analyses": { "subjects": [ "37D30", "37D10", "37C25" ], "keywords": [ "homoclinic classes", "newhouse phenomenon", "homoclinic class contains periodic points", "non-trivial chain recurrent class", "diffeomorphisms far away" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.0513Y" } } }