{ "id": "0711.4999", "version": "v1", "published": "2007-11-30T18:44:32.000Z", "updated": "2007-11-30T18:44:32.000Z", "title": "On the Ramsey multiplicity of complete graphs", "authors": [ "David Conlon" ], "comment": "15 pages", "categories": [ "math.CO" ], "abstract": "We show that, for $n$ large, there must exist at least \\[\\frac{n^t}{C^{(1+o(1))t^2}}\\] monochromatic $K_t$s in any two-colouring of the edges of $K_n$, where $C \\approx 2.18$ is an explicitly defined constant. The old lower bound, due to Erd\\H{o}s \\cite{E62}, and based upon the standard bounds for Ramsey's theorem, is \\[\\frac{n^t}{4^{(1+o(1))t^2}}.\\]", "revisions": [ { "version": "v1", "updated": "2007-11-30T18:44:32.000Z" } ], "analyses": { "subjects": [ "05C55" ], "keywords": [ "complete graphs", "ramsey multiplicity", "old lower bound", "ramseys theorem", "standard bounds" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.4999C" } } }