{ "id": "0711.4728", "version": "v2", "published": "2007-11-29T14:20:52.000Z", "updated": "2009-04-25T17:43:18.000Z", "title": "Rotation set and Entropy", "authors": [ "Heber Enrich", "Nancy Guelman", "Audrey Larcanché", "Isabelle Liousse" ], "comment": "15 pages, 2 figures, references added", "journal": "Nonlinearity (2009), vol 22 no. 8, p 1899-1907", "categories": [ "math.DS" ], "abstract": "In 1991 Llibre and MacKay proved that if $f$ is a 2-torus homeomorphism isotopic to identity and the rotation set of $f$ has a non empty interior then $f$ has positive topological entropy. Here, we give a converselike theorem. We show that the interior of the rotation set of a 2-torus $C^{1+ \\alpha}$ diffeomorphism isotopic to identity of positive topological entropy is not empty, under the additional hypotheses that $f$ is topologically transitive and irreducible. We also give examples that show that these hypotheses are necessary.", "revisions": [ { "version": "v2", "updated": "2009-04-25T17:43:18.000Z" } ], "analyses": { "subjects": [ "37E45", "37E30" ], "keywords": [ "rotation set", "positive topological entropy", "non empty interior", "homeomorphism isotopic", "additional hypotheses" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/0951-7715/22/8/007", "journal": "Nonlinearity", "year": 2009, "month": "Aug", "volume": 22, "number": 8, "pages": 1899 }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009Nonli..22.1899E" } } }