{ "id": "0711.4393", "version": "v1", "published": "2007-11-28T15:07:05.000Z", "updated": "2007-11-28T15:07:05.000Z", "title": "Lattice points in Minkowski sums", "authors": [ "Christian Haase", "Benjamin Nill", "Andreas Paffenholz", "Francisco Santos" ], "comment": "5 pages, 4 figures", "journal": "Electron J. Combin. 15(1) 2008, Note 11, 5 pp", "categories": [ "math.CO", "math.AC", "math.AG" ], "abstract": "Fakhruddin has proved that for two lattice polygons P and Q any lattice point in their Minkowski sum can be written as a sum of a lattice point in P and one in Q, provided P is smooth and the normal fan of P is a subdivision of the normal fan of Q. We give a shorter combinatorial proof of this fact that does not need the smoothness assumption on P.", "revisions": [ { "version": "v1", "updated": "2007-11-28T15:07:05.000Z" } ], "analyses": { "subjects": [ "52B20", "14M25" ], "keywords": [ "lattice point", "minkowski sum", "normal fan", "shorter combinatorial proof", "lattice polygons" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.4393H" } } }