{ "id": "0711.4341", "version": "v1", "published": "2007-11-27T20:15:10.000Z", "updated": "2007-11-27T20:15:10.000Z", "title": "Translating solutions to Lagrangian mean curvature flow", "authors": [ "André Neves", "Gang Tian" ], "comment": "26 pages, 1 figure, submitted", "categories": [ "math.DG", "math.AP" ], "abstract": "We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an $L^2$ bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.", "revisions": [ { "version": "v1", "updated": "2007-11-27T20:15:10.000Z" } ], "analyses": { "subjects": [ "53C44" ], "keywords": [ "lagrangian mean curvature flow", "non-existence theorems", "almost-calibrated translating solutions", "conditions" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.4341N" } } }