{ "id": "0711.4336", "version": "v1", "published": "2007-11-27T19:56:21.000Z", "updated": "2007-11-27T19:56:21.000Z", "title": "The real loci of Calogero-Moser spaces, representations of rational Cherednik algebras and the Shapiro conjecture", "authors": [ "Iain Gordon", "Emil Horozov", "Milen Yakimov" ], "comment": "19 pages", "categories": [ "math.RT", "math.AG", "math.CO" ], "abstract": "We prove a criterion for the reality of irreducible representations of the rational Cherednik algebras H_{0,1}(S_n). This is shown to imply a criterion for the real loci of the Calogero-Moser spaces C_n in terms of the Etingof-Ginzburg finite maps \\Upsilon \\colon C_n \\to C^n/S_n \\times C^n/S_n, recovering a result of Mikhin, Tarasov, and Varchenko [MTV2]. As a consequence we obtain a criterion for the real locus of the Wilson's adelic Grassmannian of rank one bispectral solutions of the KP hierarchy. Using Wilson's first parametrisation of the adelic Grassmannian, we give a new proof of a result of [MTV2] on real bases of spaces of quasi polynomials. The Shapiro Conjecture for Grassmannians is equivalent to a special case of our result for Calogero-Moser spaces, namely for the fibres of \\Upsilon over C^n/S_n \\times 0.", "revisions": [ { "version": "v1", "updated": "2007-11-27T19:56:21.000Z" } ], "analyses": { "keywords": [ "rational cherednik algebras", "real locus", "calogero-moser spaces", "shapiro conjecture", "representations" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.4336G" } } }