{ "id": "0711.4210", "version": "v2", "published": "2007-11-27T09:59:07.000Z", "updated": "2008-11-28T18:58:57.000Z", "title": "Signalizers and balance in groups of finite Morley rank", "authors": [ "Jeffrey Burdges" ], "categories": [ "math.LO", "math.GR" ], "abstract": "We show that a minimal counter example to the Cherlin-Zilber Algebraicity Conjecture for simple groups of finite Morley rank has Prufer 2-rank at most two. This article covers the signalizer functor theory and identifies the groups of Lie rank at least three; leaving the uniqueness case analysis to previous articles. This result signifies the end of the general methods used to handle large groups; hereafter each individual group PSL$_2$, PSL$_3$, PSp$_4$, and G$_2$ will require its own identification theorem.", "revisions": [ { "version": "v2", "updated": "2008-11-28T18:58:57.000Z" } ], "analyses": { "subjects": [ "03C60", "20G99" ], "keywords": [ "finite morley rank", "handle large groups", "cherlin-zilber algebraicity conjecture", "uniqueness case analysis", "signalizer functor theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.4210B" } } }