{ "id": "0711.4195", "version": "v2", "published": "2007-11-27T08:06:15.000Z", "updated": "2008-06-09T09:36:36.000Z", "title": "On asymptotic stability in energy space of ground states for Nonlinear Schrödinger equations", "authors": [ "Scipio Cuccagna", "Tetsu Mizumachi" ], "categories": [ "math.AP" ], "abstract": "We consider nonlinear Schr\\\"odinger equations in dimension 3 or higher. We prove that symmetric finite energy solutions close to orbitally stable ground states converge asymptotically to a sum of a ground state and a dispersive wave assuming the so called Fermi Golden Rule (FGR) hypothesis. We improve the sign condition required in a recent paper by Gang Zhou and I.M.Sigal", "revisions": [ { "version": "v2", "updated": "2008-06-09T09:36:36.000Z" } ], "analyses": { "keywords": [ "nonlinear schrödinger equations", "energy space", "asymptotic stability", "stable ground states converge" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00220-008-0605-3", "journal": "Communications in Mathematical Physics", "year": 2008, "month": "Nov", "volume": 284, "number": 1, "pages": 51 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008CMaPh.284...51C" } } }