{ "id": "0711.4117", "version": "v1", "published": "2007-11-26T21:03:40.000Z", "updated": "2007-11-26T21:03:40.000Z", "title": "A Simplified Calculation for the Fundamental Solution to the Heat Equation on the Heisenberg Group", "authors": [ "Albert Boggess", "Andrew Raich" ], "comment": "8 pages", "journal": "Proc. Amer. Math. Soc. 137 (2009), no. 3, 937--944", "categories": [ "math.AP" ], "abstract": "Let $L = -1/4 (\\sum_{j=1}^n(X_j^2+Y_j^2)+i\\gamma T)$ where $\\gamma$ is a complex number, $X_j$, $Y_j$, and $T$ are the left invariant vector fields of the Heisenberg group structure for $R^n \\times R^n \\times R$. We explicitly compute the Fourier transform (in the spatial variables) of the fundamental solution of the Heat Equation $\\partial_s\\rho = -L\\rho$. As a consequence, we have a simplified computation of the Fourier transform of the fundamental solution of the $\\Box_b$-heat equation on the Heisenberg group and an explicit kernel of the heat equation associated to the weighted dbar-operator in $C^n$ with weight $\\exp(-\\tau P(z_1,...,z_n))$ where $P(z_1,...,z_n) = 1/2(x_1^2 + >... x_n^2)$, $z_j=x_j+iy_j$, and $\\tau\\in R$.", "revisions": [ { "version": "v1", "updated": "2007-11-26T21:03:40.000Z" } ], "analyses": { "subjects": [ "32W30", "33C45", "42C10" ], "keywords": [ "heat equation", "fundamental solution", "simplified calculation", "left invariant vector fields", "fourier transform" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Proc. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.4117B" } } }