{ "id": "0711.3940", "version": "v2", "published": "2007-11-26T05:18:30.000Z", "updated": "2008-10-05T21:03:04.000Z", "title": "A recursion equation for prime numbers", "authors": [ "Joseph B. Keller" ], "comment": "2 pages; replacement 10/05/2008 corrects typographical error page 2, reference #1, author last name", "categories": [ "math.NT" ], "abstract": "It is shown that the first $n$ prime numbers $p_1,...,p_n$ determine the next one by the recursion equation $$ p_{n+1} =\\lim\\limits_{s\\to +\\infty} [\\prod\\limits^n_{k=1} (1-\\frac{1}{p^s_k}) \\sum\\limits^\\infty_{j=1} \\frac{1}{j^s} -1]^{-1/s}. $$ The upper limit on the sum can be replaced by $2p_n -1$, and the result still holds.", "revisions": [ { "version": "v2", "updated": "2008-10-05T21:03:04.000Z" } ], "analyses": { "subjects": [ "11A41" ], "keywords": [ "prime numbers", "recursion equation", "upper limit" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.3940K" } } }