{ "id": "0711.3768", "version": "v2", "published": "2007-11-23T17:03:13.000Z", "updated": "2008-01-28T14:04:00.000Z", "title": "Convex-transitivity and function spaces", "authors": [ "Jarno Talponen" ], "comment": "Corrected version", "categories": [ "math.FA" ], "abstract": "If X is a convex-transitive Banach space and 1\\leq p\\leq \\infty then the closed linear span of the simple functions in the Bochner space L^{p}([0,1],X) is convex-transitive. If H is an infinite-dimensional Hilbert space and C_{0}(L) is convex-transitive, then C_{0}(L,H) is convex-transitive. Some new fairly concrete examples of convex-transitive spaces are provided.", "revisions": [ { "version": "v2", "updated": "2008-01-28T14:04:00.000Z" } ], "analyses": { "subjects": [ "46B04", "46E40" ], "keywords": [ "function spaces", "convex-transitivity", "infinite-dimensional hilbert space", "bochner space", "simple functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.3768T" } } }