{ "id": "0711.3513", "version": "v1", "published": "2007-11-22T07:10:22.000Z", "updated": "2007-11-22T07:10:22.000Z", "title": "Galois groups of the Lie-irreducible generalized $q$-hypergeometric equations of order three with $q$-real parameters : an approach using a density theorem", "authors": [ "Julien Roques" ], "categories": [ "math.CA" ], "abstract": "In this paper we compute the difference Galois groups of the Lie-irreducible regular singular generalized q-hypergeometric equations of order 3 with q-real parameters by using a density theorem due to Sauloy. In contrast with the differential case, we show that these groups automatically contain the special linear group SL(3,C).", "revisions": [ { "version": "v1", "updated": "2007-11-22T07:10:22.000Z" } ], "analyses": { "keywords": [ "galois groups", "density theorem", "real parameters", "regular singular generalized q-hypergeometric", "singular generalized q-hypergeometric equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.3513R" } } }