{ "id": "0711.3353", "version": "v2", "published": "2007-11-21T11:41:32.000Z", "updated": "2008-07-29T17:42:52.000Z", "title": "On orbits of antichains of positive roots", "authors": [ "Dmitri I. Panyushev" ], "comment": "12 pages, final version; to appear in Europ. J. Combinatorics", "categories": [ "math.CO", "math.RT" ], "abstract": "For any finite poset P, there is a natural operator $X$ acting on the antichains of P. We discuss conjectural properties of this operator for some graded posets associated with irreducible root systems. In particular, if $\\Delta^+$ is the set of positive roots and $\\Pi$ is the set of simple roots in $\\Delta^+$, then we consider the cases $P=\\Delta^+$ and $\\Delta^+\\setminus \\Pi$. For the root system of type $A_n$, we consider an $X$-invariant integer-valued function on the set of antichains of $\\Delta^+$ and establish some properties of it.", "revisions": [ { "version": "v2", "updated": "2008-07-29T17:42:52.000Z" } ], "analyses": { "keywords": [ "positive roots", "antichains", "conjectural properties", "invariant integer-valued function", "finite poset" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.3353P" } } }