{ "id": "0711.2809", "version": "v2", "published": "2007-11-18T18:50:22.000Z", "updated": "2008-06-13T18:47:09.000Z", "title": "Root Systems for Levi Factors and Borel-de Siebenthal Theory", "authors": [ "Bertram Kostant" ], "comment": "28 pages, plain tex", "categories": [ "math.RT", "math.GR" ], "abstract": "Let $\\frak{m}$ be a Levi factor of a proper parabolic subalgebra $\\frak{q}$ of a complex semisimple Lie algebra $\\frak{g}$. Let $\\frak{t} = cent \\frak{m}$. A nonzero element $\\nu \\in \\frak{t}^*$ is called a $\\frak {t}$-root if the corresponding adjoint weight space $\\frak{g}_{nu}$ is not zero. If $\\nu$ is a $\\frak{t}$-root, some time ago we proved that $\\frak{g}_{\\nu}$ is $ad \\frak{m}$ irreducible. Based on this result we develop in the present paper a theory of $\\frak{t}$-roots which replicates much of the structure of classical root theory (case where $\\frak{t}$ is a Cartan subalgebra). The results are applied to obtain new reults about the structure of the nilradical $\\frak{n}$ of $\\frak{q}$. Also applications in the case where $dim \\frak{t}=1$ are used in Borel-de Siebenthal theory to determine irreducibility theorems for certain equal rank subalgebras of $\\frak{g}$. In fact the irreducibility results readily yield a proof of the main assertions of the Borel-de Siebenthal theory.", "revisions": [ { "version": "v2", "updated": "2008-06-13T18:47:09.000Z" } ], "analyses": { "subjects": [ "20Gxx", "22E10", "22E25", "22E46" ], "keywords": [ "borel-de siebenthal theory", "levi factor", "root systems", "complex semisimple lie algebra", "irreducibility results readily yield" ], "note": { "typesetting": "Plain TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.2809K" } } }