{ "id": "0711.2675", "version": "v1", "published": "2007-11-16T20:31:22.000Z", "updated": "2007-11-16T20:31:22.000Z", "title": "A note on random walks in a hypercube", "authors": [ "Stanislav Volkov", "Timothy Wong" ], "categories": [ "math.PR", "math.CO" ], "abstract": "We study a simple random walk on an n-dimensional hypercube. For any starting position we find the probability of hitting vertex a before hitting vertex b, whenever a and b share the same edge. This generalizes the model in Doyle, P., and Snell, J., \"Random Walks and Electric Networks\", Mathematical Association of America, 1984 (see Exercise 1.3.7 there).", "revisions": [ { "version": "v1", "updated": "2007-11-16T20:31:22.000Z" } ], "analyses": { "subjects": [ "60G50", "60J45" ], "keywords": [ "hitting vertex", "simple random walk", "n-dimensional hypercube", "electric networks", "starting position" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.2675V" } } }