{ "id": "0711.2571", "version": "v1", "published": "2007-11-16T09:31:36.000Z", "updated": "2007-11-16T09:31:36.000Z", "title": "On the Ramsey numbers for a combination of paths and Jahangirs", "authors": [ "Kashif Ali", "Edy Tri Baskoro" ], "categories": [ "math.CO" ], "abstract": "For given graphs $G$ and $H,$ the \\emph{Ramsey number} $R(G,H)$ is the least natural number $n$ such that for every graph $F$ of order $n$ the following condition holds: either $F$ contains $G$ or the complement of $F$ contains $H.$ In this paper, we improve the Surahmat and Tomescu's result \\cite{ST:06} on the Ramsey number of paths versus Jahangirs. We also determine the Ramsey number $R(\\cup G,H)$, where $G$ is a path and $H$ is a Jahangir graph.", "revisions": [ { "version": "v1", "updated": "2007-11-16T09:31:36.000Z" } ], "analyses": { "keywords": [ "ramsey number", "combination", "jahangir graph", "condition holds", "tomescus result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.2571A" } } }