{ "id": "0711.2541", "version": "v14", "published": "2007-11-16T00:51:57.000Z", "updated": "2015-09-10T07:56:04.000Z", "title": "Schubert calculus and cohomology of Lie groups. Part I. 1-connected Lie groups", "authors": [ "Haibao Duan", "Xuezhi Zhao" ], "comment": "32 pages; 4 tables", "categories": [ "math.AT", "math.AG" ], "abstract": "Let $G$ be a compact and $1$--connected Lie group with a maximal torus $T$. Based on Schubert calculus on the flag manifold $G/T$ [15] we construct the integral cohomology ring $H^{\\ast}(G)$ uniformly for all $G$.", "revisions": [ { "version": "v13", "updated": "2013-09-16T23:57:10.000Z", "title": "Schubert calculus and cohomology of Lie groups", "abstract": "Let G be a 1-connected simple Lie group with a maximal torus T. Combining the canonical presentation of the integral cohomology of the flag manifold G/T obtained in [20] with Leray-Serre spectral sequence of the fibration G\\toG/T, we construct the cohomology ring H^{\\ast}(G;F) uniformly for all G and F=Q,F_{p},Z.", "comment": "44 pages; 4 tables", "journal": null, "doi": null }, { "version": "v14", "updated": "2015-09-10T07:56:04.000Z" } ], "analyses": { "subjects": [ "14M15", "55T10" ], "keywords": [ "schubert calculus", "simple lie group", "flag manifold g/t", "leray-serre spectral sequence", "integral cohomology" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.2541D" } } }