{ "id": "0711.2240", "version": "v2", "published": "2007-11-14T16:19:48.000Z", "updated": "2007-11-19T19:57:45.000Z", "title": "A note on the least totient of a residue class", "authors": [ "M. Z. Garaev" ], "comment": "Improved version", "categories": [ "math.NT" ], "abstract": "Let $q$ be a large prime number, $a$ be any integer, $\\epsilon$ be a fixed small positive quantity. Friedlander and Shparlinksi \\cite{FSh} have shown that there exists a positive integer $n\\ll q^{5/2+\\epsilon}$ such that $\\phi(n)$ falls into the residue class $a \\pmod q.$ Here, $\\phi(n)$ denotes Euler's function. In the present paper we improve this bound to $n\\ll q^{2+\\epsilon}.$", "revisions": [ { "version": "v2", "updated": "2007-11-19T19:57:45.000Z" } ], "analyses": { "subjects": [ "11L40" ], "keywords": [ "residue class", "large prime number", "denotes eulers function", "fixed small positive quantity", "friedlander" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.2240G" } } }