{ "id": "0711.1897", "version": "v1", "published": "2007-11-13T00:58:01.000Z", "updated": "2007-11-13T00:58:01.000Z", "title": "Spherical Means in Odd Dimensions and EPD equations", "authors": [ "Boris Rubin" ], "categories": [ "math.FA", "math.AP" ], "abstract": "The paper contains a simple proof of the Finch-Patch-Rakesh inversion formula for the spherical mean Radon transform in odd dimensions. This transform arises in thermoacoustic tomography. Applications are given to the Cauchy problem for the Euler-Poisson-Darboux equation with initial data on the cylindrical surface. The argument relies on the idea of analytic continuation and known properties of Erdelyi-Kober fractional integrals.", "revisions": [ { "version": "v1", "updated": "2007-11-13T00:58:01.000Z" } ], "analyses": { "subjects": [ "44A12", "92C55", "65R32" ], "keywords": [ "odd dimensions", "epd equations", "erdelyi-kober fractional integrals", "finch-patch-rakesh inversion formula", "spherical mean radon transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.1897R" } } }