{ "id": "0711.1753", "version": "v1", "published": "2007-11-12T11:41:25.000Z", "updated": "2007-11-12T11:41:25.000Z", "title": "On small fractional parts of polynomials", "authors": [ "Nikolay G. Moshchevitin" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "We prove that for any real polynomial $f(x) \\in\\mathbb{R} [x]$ the set $$ \\{\\alpha \\in \\mathbb{R}: \\liminf_{n\\to \\infty} n\\log n ||\\alpha f(n)|| >0\\} $$ has positive Hausdorff dimension. Here $||\\xi ||$ means the distance from $\\xi $ to the nearest integer. Our result is based on an original method due to Y. Peres and W. Schlag.", "revisions": [ { "version": "v1", "updated": "2007-11-12T11:41:25.000Z" } ], "analyses": { "subjects": [ "11J54" ], "keywords": [ "small fractional parts", "real polynomial", "nearest integer", "original method", "positive hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.1753M" } } }