{ "id": "0711.1302", "version": "v1", "published": "2007-11-08T15:54:13.000Z", "updated": "2007-11-08T15:54:13.000Z", "title": "Local probabilities for random walks conditioned to stay positive", "authors": [ "Vladimir Vatutin", "Vitali Wachtel" ], "categories": [ "math.PR" ], "abstract": "Let S_0=0,{S_n, n>0} be a random walk generated by a sequence of i.i.d. random variables X_1,X_2,... and let \\tau^{-} be the first descending ladder epoch. Assuming that the distribution of X_1 belongs to the domain of attraction of an \\alpha-stable law we study the asymptotic behavior of the local probabilities P(\\tau ^{-}=n) and the conditional local probabilities P(S_n\\in [x,x+y)|\\tau^{-}>n) for fixed y and x=x(n)\\in (0,\\infty).", "revisions": [ { "version": "v1", "updated": "2007-11-08T15:54:13.000Z" } ], "analyses": { "keywords": [ "random walks", "stay positive", "conditional local probabilities", "first descending ladder epoch", "random variables" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.1302V" } } }