{ "id": "0711.1277", "version": "v1", "published": "2007-11-08T13:53:22.000Z", "updated": "2007-11-08T13:53:22.000Z", "title": "Hecke operators and Hilbert modular forms", "authors": [ "Paul E. Gunnells", "Dan Yasaki" ], "categories": [ "math.NT" ], "abstract": "Let F be a real quadratic field with ring of integers O and with class number 1. Let Gamma be a congruence subgroup of GL_2 (O). We describe a technique to compute the action of the Hecke operators on the cohomology H^3 (Gamma; C). For F real quadratic this cohomology group contains the cuspidal cohomology corresponding to cuspidal Hilbert modular forms of parallel weight 2. Hence this technique gives a way to compute the Hecke action on these Hilbert modular forms.", "revisions": [ { "version": "v1", "updated": "2007-11-08T13:53:22.000Z" } ], "analyses": { "subjects": [ "11F41", "11F60", "11F75" ], "keywords": [ "hecke operators", "cuspidal hilbert modular forms", "real quadratic field", "cohomology group contains", "hecke action" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.1277G" } } }