{ "id": "0711.1091", "version": "v1", "published": "2007-11-07T14:11:58.000Z", "updated": "2007-11-07T14:11:58.000Z", "title": "Convergence to equilibrium distribution. The Klein-Gordon equation coupled to a particle", "authors": [ "T. V. Dudnikova" ], "comment": "22 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider the Hamiltonian system consisting of a Klein-Gordon vector field and a particle in $\\R^3$. The initial date of the system is a random function with a finite mean density of energy which also satisfies a Rosenblatt- or Ibragimov-type mixing condition. Moreover, initial correlation functions are translation-invariant. We study the distribution $\\mu_t$ of the solution at time $t\\in\\R$. The main result is the convergence of $\\mu_t$ to a Gaussian measure as $t\\to\\infty$, where $\\mu_\\infty$ is translation-invariant.", "revisions": [ { "version": "v1", "updated": "2007-11-07T14:11:58.000Z" } ], "analyses": { "subjects": [ "35L15", "60Fxx", "60Gxx", "82Bxx" ], "keywords": [ "klein-gordon equation", "equilibrium distribution", "convergence", "klein-gordon vector field", "finite mean density" ], "publication": { "doi": "10.1134/S1061920810010073", "journal": "Russian Journal of Mathematical Physics", "year": 2010, "month": "Mar", "volume": 17, "number": 1, "pages": 77 }, "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010RJMP...17...77D" } } }