{ "id": "0711.0631", "version": "v1", "published": "2007-11-05T13:16:28.000Z", "updated": "2007-11-05T13:16:28.000Z", "title": "Skorohod-reflection of Brownian Paths and BES^3", "authors": [ "Balint Toth", "Balint Veto" ], "comment": "7 pages, no figures", "categories": [ "math.PR" ], "abstract": "Let B(t), X(t) and Y(t) be independent standard 1d Borwnian motions. Define X^+(t) and Y^-(t) as the trajectories of the processes X(t) and Y(t) pushed upwards and, respectively, downwards by B(t), according to Skorohod-reflection. In a recent paper, Jon Warren proves inter alia that Z(t):= X^+(t)-Y^-(t) is a three-dimensional Bessel-process. In this note, we present an alternative, elementary proof of this fact.", "revisions": [ { "version": "v1", "updated": "2007-11-05T13:16:28.000Z" } ], "analyses": { "subjects": [ "60J65" ], "keywords": [ "brownian paths", "skorohod-reflection", "independent standard 1d borwnian motions", "elementary proof", "three-dimensional bessel-process" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.0631T" } } }