{ "id": "0711.0275", "version": "v1", "published": "2007-11-02T10:01:50.000Z", "updated": "2007-11-02T10:01:50.000Z", "title": "Global existence for energy critical waves in 3-d domains : Neumann boundary conditions", "authors": [ "N. Burq", "F. Planchon" ], "comment": "21 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "We prove that the defocusing quintic wave equation, with Neumann boundary conditions, is globally wellposed on $H^1_N(\\Omega) \\times L^2(\\Omega)$ for any smooth (compact) domain $\\Omega \\subset \\mathbb{R}^3$. The proof relies on one hand on $L^p$ estimates for the spectral projector by Smith and Sogge, and on the other hand on a precise analysis of the boundary value problem, which turns out to be much more delicate than in the case of Dirichlet boundary conditions.", "revisions": [ { "version": "v1", "updated": "2007-11-02T10:01:50.000Z" } ], "analyses": { "keywords": [ "neumann boundary conditions", "energy critical waves", "global existence", "dirichlet boundary conditions", "boundary value problem" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.0275B" } } }