{ "id": "0710.5611", "version": "v1", "published": "2007-10-30T11:22:53.000Z", "updated": "2007-10-30T11:22:53.000Z", "title": "Universal cycles for permutations", "authors": [ "J. Robert Johnson" ], "comment": "14 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "A universal cycle for permutations is a word of length n! such that each of the n! possible relative orders of n distinct integers occurs as a cyclic interval of the word. We show how to construct such a universal cycle in which only n+1 distinct integers are used. This is best possible and proves a conjecture of Chung, Diaconis and Graham.", "revisions": [ { "version": "v1", "updated": "2007-10-30T11:22:53.000Z" } ], "analyses": { "subjects": [ "05A99" ], "keywords": [ "universal cycle", "permutations", "distinct integers occurs", "cyclic interval", "relative orders" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.5611J" } } }