{ "id": "0710.5426", "version": "v2", "published": "2007-10-29T13:41:30.000Z", "updated": "2008-08-12T18:59:52.000Z", "title": "On the existence of a v_2^32-self map on M(1,4) at the prime 2", "authors": [ "Mark Behrens", "Michael Hill", "Michael J. Hopkins", "Mark Mahowald" ], "comment": "31 pages, 16 figures. Revised version: includes new section (section 9)explaining centrality of d_2(v_2^8) and d_3(v_2^16), and fixes an error in section 7", "categories": [ "math.AT" ], "abstract": "Let M(1) be the mod 2 Moore spectrum. J.F. Adams proved that M(1) admits a minimal v_1-self map v_1^4: Sigma^8 M(1) -> M(1). Let M(1,4) be the cofiber of this self-map. The purpose of this paper is to prove that M(1,4) admits a minimal v_2-self map of the form v_2^32: Sigma^192 M(1,4) -> M(1,4). The existence of this map implies the existence of many 192-periodic families of elements in the stable homotopy groups of spheres.", "revisions": [ { "version": "v2", "updated": "2008-08-12T18:59:52.000Z" } ], "analyses": { "subjects": [ "55Q51", "55Q40" ], "keywords": [ "moore spectrum", "map implies", "stable homotopy groups" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.5426B" } } }