{ "id": "0710.4514", "version": "v2", "published": "2007-10-24T16:52:38.000Z", "updated": "2010-06-16T15:29:16.000Z", "title": "The External Fundamental Group of an Algebraic Number Field", "authors": [ "T. M. Gendron" ], "comment": "4 pages", "categories": [ "math.NT", "math.AT", "math.LO" ], "abstract": "We associate to every algebraic number field a hyperbolic surface lamination and an external fundamental group: the latter a generalization of the fundamental germ that necessarily contains external (not first order definable) elements. The external fundamental group of the rationals is a split extension of the absolute Galois group, that conjecturally contains a subgroup whose abelianization is isomorphic to the idele class group.", "revisions": [ { "version": "v2", "updated": "2010-06-16T15:29:16.000Z" } ], "analyses": { "subjects": [ "11R32", "14H30", "57R30", "03C20" ], "keywords": [ "external fundamental group", "algebraic number field", "idele class group", "hyperbolic surface lamination", "absolute galois group" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.4514G" } } }