{ "id": "0710.4406", "version": "v4", "published": "2007-10-24T08:41:47.000Z", "updated": "2013-05-29T07:35:51.000Z", "title": "Rigidity and non local connectivity of Julia sets of some quadratic polynomials", "authors": [ "Genadi Levin" ], "comment": "Final version of the Addendum, minor changes. To appear", "categories": [ "math.DS", "math.CV" ], "abstract": "For an infinitely renormalizable quadratic map $f_c: z\\mapsto z^2+c$ with the sequence of renormalization periods ${k_m}$ and rotation numbers ${t_m=p_m/q_m}, we prove that if $\\limsup k_m^{-1}\\log |p_m|>0$, then the Mandelbrot set is locally connected at $c$. We prove also that if $\\limsup |t_{m+1}|^{1/q_m}<1$ and $q_m\\to \\infty$, then the Julia set of $f_c$ is not locally connected and the Mandelbrot set is locally connected at $c$ provided that all the renormalizations are non-primitive (satellite). This quantifies a construction of A. Douady and J. Hubbard, and weakens a condition proposed by J. Milnor. Abstract of the Addendum: We improve one of the main results of the above paper.", "revisions": [ { "version": "v4", "updated": "2013-05-29T07:35:51.000Z" } ], "analyses": { "subjects": [ "37F45", "37F50", "37G15", "30D05" ], "keywords": [ "non local connectivity", "julia sets", "quadratic polynomials", "main results", "infinitely renormalizable quadratic map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.4406L" } } }