{ "id": "0710.4102", "version": "v1", "published": "2007-10-22T16:50:47.000Z", "updated": "2007-10-22T16:50:47.000Z", "title": "Decay of the Maxwell field on the Schwarzschild manifold", "authors": [ "P. Blue" ], "comment": "37 pages, 5 figures", "categories": [ "math.AP" ], "abstract": "We study solutions of the decoupled Maxwell equations in the exterior region of a Schwarzschild black hole. In stationary regions, where the Schwarzschild coordinate $r$ ranges over $2M < r_1 < r < r_2$, we obtain a decay rate of $t^{-1}$ for all components of the Maxwell field. We use vector field methods and do not require a spherical harmonic decomposition. In outgoing regions, where the Regge-Wheeler tortoise coordinate is large, $r_*>\\epsilon t$, we obtain decay for the null components with rates of $|\\phi_+| \\sim |\\alpha| < C r^{-5/2}$, $|\\phi_0| \\sim |\\rho| + |\\sigma| < C r^{-2} |t-r_*|^{-1/2}$, and $|\\phi_{-1}| \\sim |\\underline{\\alpha}| < C r^{-1} |t-r_*|^{-1}$. Along the event horizon and in ingoing regions, where $r_*<0$, and when $t+r_*1$, all components (normalized with respect to an ingoing null basis) decay at a rate of $C \\uout^{-1}$ with $\\uout=t+r_*$ in the exterior region.", "revisions": [ { "version": "v1", "updated": "2007-10-22T16:50:47.000Z" } ], "analyses": { "subjects": [ "35Q75" ], "keywords": [ "maxwell field", "schwarzschild manifold", "exterior region", "components", "schwarzschild black hole" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.4102B" } } }