{ "id": "0710.3718", "version": "v1", "published": "2007-10-19T15:10:18.000Z", "updated": "2007-10-19T15:10:18.000Z", "title": "Weighted Sequences in Finite Cyclic Groups", "authors": [ "David J. Grynkiewicz", "Jujuan Zhuang" ], "categories": [ "math.CO", "math.NT" ], "abstract": "Let $p>7$ be a prime, let $G=\\Z/p\\Z$, and let $S_1=\\prod_{i=1}^p g_i$ and $S_2=\\prod_{i=1}^p h_i$ be two sequences with terms from $G$. Suppose that the maximum multiplicity of a term from either $S_1$ or $S_2$ is at most $\\frac{2p+1}{5}$. Then we show that, for each $g\\in G$, there exists a permutation $\\sigma$ of $1,2,..., p$ such that $g=\\sum_{i=1}^{p}(g_i\\cdot h_{\\sigma(i)})$. The question is related to a conjecture of A. Bialostocki concerning weighted subsequence sums and the Erd\\H{o}s-Ginzburg-Ziv Theorem.", "revisions": [ { "version": "v1", "updated": "2007-10-19T15:10:18.000Z" } ], "analyses": { "subjects": [ "11B75", "11B50" ], "keywords": [ "finite cyclic groups", "weighted sequences", "bialostocki concerning weighted subsequence sums", "maximum multiplicity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.3718G" } } }