{ "id": "0710.3668", "version": "v1", "published": "2007-10-19T10:13:23.000Z", "updated": "2007-10-19T10:13:23.000Z", "title": "Harmonic sections of tangent bundles equipped with Riemannian $g$-natural metrics", "authors": [ "M. T. K. Abbassi", "G. Calvaruso", "D. Perrone" ], "comment": "27 pages", "categories": [ "math.DG" ], "abstract": "Let $(M,g)$ be a Riemannian manifold. When $M$ is compact and the tangent bundle $TM$ is equipped with the Sasaki metric $g^s$, the only vector fields which define harmonic maps from $(M,g)$ to $(TM,g^s)$, are the parallel ones. The Sasaki metric, and other well known Riemannian metrics on $TM$, are particular examples of $g$-natural metrics. We equip $TM$ with an arbitrary Riemannian $g$-natural metric $G$, and investigate the harmonicity of a vector field $V$ of $M$, thought as a map from $(M,g)$ to $(TM,G)$. We then apply this study to the Reeb vector field and, in particular, to Hopf vector fields on odd-dimensional spheres.", "revisions": [ { "version": "v1", "updated": "2007-10-19T10:13:23.000Z" } ], "analyses": { "subjects": [ "53C43", "53C07", "53C15", "53D10" ], "keywords": [ "natural metric", "tangent bundles", "harmonic sections", "sasaki metric", "define harmonic maps" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.3668A" } } }