{ "id": "0710.3456", "version": "v1", "published": "2007-10-18T08:29:09.000Z", "updated": "2007-10-18T08:29:09.000Z", "title": "On an extreme two-point distribution", "authors": [ "V. I. Chebotarev", "A. S. Kondrik", "K. V. Mikhaylov" ], "comment": "4 pages, 3 figures", "categories": [ "math.PR" ], "abstract": "A bound for functional $\\Delta(F)=\\sup_{x\\in\\mathbb R}|F(x)-\\Phi(x)|$ is obtained, which is uniform for all distribution functions $F$ of random variables with zero mean-value and unity variance. Moreover, a two-point distribution is found, for which this bound is reached.", "revisions": [ { "version": "v1", "updated": "2007-10-18T08:29:09.000Z" } ], "analyses": { "subjects": [ "60E15" ], "keywords": [ "extreme two-point distribution", "distribution functions", "unity variance", "random variables" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.3456C" } } }