{ "id": "0710.3425", "version": "v3", "published": "2007-10-18T02:02:30.000Z", "updated": "2009-01-27T02:58:12.000Z", "title": "An entanglement measure for n-qubits", "authors": [ "D. Li", "X. Li", "H. Huang", "X. Li" ], "comment": "16 pages, no figures", "journal": "J. Math. Phys. 50, 012104 (2009)", "doi": "10.1063/1.3050298", "categories": [ "quant-ph" ], "abstract": "Recently, Coffman, Kundu, and Wootters introduced the residual entanglement for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61, 052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual entanglement for $n$ qubits, whose values are between 0 and 1. In this paper, we want to show that the residual entanglement for $n$ qubits is a natural measure of entanglement by demonstrating the following properties. (1). It is SL-invariant, especially LU-invariant. (2). It is an entanglement monotone. (3). It is invariant under permutations of the qubits. (4). It vanishes or is multiplicative for product states.", "revisions": [ { "version": "v3", "updated": "2009-01-27T02:58:12.000Z" } ], "analyses": { "subjects": [ "03.65.Ud", "03.67.Mn", "03.67.Lx" ], "keywords": [ "entanglement measure", "residual entanglement", "product states", "natural measure", "entanglement monotone" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "Journal of Mathematical Physics", "year": 2009, "month": "Jan", "volume": 50, "number": 1, "pages": 2104 }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009JMP....50a2104L" } } }