{ "id": "0710.1936", "version": "v3", "published": "2007-10-10T06:51:33.000Z", "updated": "2008-09-01T07:59:54.000Z", "title": "Regular integers modulo n", "authors": [ "László Tóth" ], "comment": "9 pages, final version", "journal": "Annales Univ. Sci. Budapest., Sect. Comp., 29 (2008), 263-275", "categories": [ "math.NT" ], "abstract": "Let $n=p_1^{\\nu_1}... p_r^{\\nu_r} >1$ be an integer. An integer $a$ is called regular (mod $n$) if there is an integer $x$ such that $a^2x\\equiv a$ (mod $n$). Let $\\varrho(n)$ denote the number of regular integers $a$ (mod $n$) such that $1\\le a\\le n$. Here $\\varrho(n)=(\\phi(p_1^{\\nu_1})+1)... (\\phi(p_r^{\\nu_r})+1)$, where $\\phi(n)$ is the Euler function. In this paper we first summarize some basic properties of regular integers (mod $n$). Then in order to compare the rates of growth of the functions $\\varrho(n)$ and $\\phi(n)$ we investigate the average orders and the extremal orders of the functions $\\varrho(n)/\\phi(n)$, $\\phi(n)/\\varrho(n)$ and $1/\\varrho(n)$.", "revisions": [ { "version": "v3", "updated": "2008-09-01T07:59:54.000Z" } ], "analyses": { "subjects": [ "11A25", "11N37" ], "keywords": [ "regular integers modulo", "basic properties", "euler function", "average orders", "extremal orders" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.1936T" } } }