{ "id": "0710.1183", "version": "v1", "published": "2007-10-05T10:50:53.000Z", "updated": "2007-10-05T10:50:53.000Z", "title": "Connectivity of Addition Cayley Graphs", "authors": [ "David J. Grynkiewicz", "Oriol Serra", "Vsevolod Lev" ], "categories": [ "math.CO", "math.NT" ], "abstract": "For any finite abelian group $G$ and any subset $S\\seq G$, we determine the connectivity of the addition Cayley graph induced by $S$ on $G$. Moreover, we show that if this graph is not complete, then it possesses a minimum vertex cut of a special, explicitly described form.", "revisions": [ { "version": "v1", "updated": "2007-10-05T10:50:53.000Z" } ], "analyses": { "subjects": [ "11B75", "05C25", "11P70" ], "keywords": [ "connectivity", "finite abelian group", "minimum vertex cut", "addition cayley graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.1183G" } } }