{ "id": "0710.1078", "version": "v1", "published": "2007-10-04T19:43:07.000Z", "updated": "2007-10-04T19:43:07.000Z", "title": "Polya's conjecture in the presence of a constant magnetic field", "authors": [ "Rupert L. Frank", "Michael Loss", "Timo Weidl" ], "comment": "15 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider the Dirichlet Laplacian with a constant magnetic field in a two-dimensional domain of finite measure. We determine the sharp constants in semi-classical eigenvalue estimates and show, in particular, that Polya's conjecture is not true in the presence of a magnetic field.", "revisions": [ { "version": "v1", "updated": "2007-10-04T19:43:07.000Z" } ], "analyses": { "keywords": [ "constant magnetic field", "polyas conjecture", "dirichlet laplacian", "semi-classical eigenvalue estimates", "sharp constants" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.1078F" } } }