{ "id": "0710.0797", "version": "v1", "published": "2007-10-03T14:25:07.000Z", "updated": "2007-10-03T14:25:07.000Z", "title": "The eigenvalues of limits of radial Toeplitz operators", "authors": [ "Daniel Suárez" ], "comment": "14 pages", "doi": "10.1112/blms/bdn042", "categories": [ "math.FA", "math.OA" ], "abstract": "Let $A^2$ be the Bergman space on the unit disk. A bounded operator $S$ on $A^2$ is called radial if $Sz^n = \\lambda_n z^n$ for all $n\\ge 0$, where $\\lambda_n$ is a bounded sequence of complex numbers. We characterize the eigenvalues of radial operators that can be approximated by Toeplitz operators with bounded symbols.", "revisions": [ { "version": "v1", "updated": "2007-10-03T14:25:07.000Z" } ], "analyses": { "subjects": [ "32A36", "47L80" ], "keywords": [ "radial toeplitz operators", "eigenvalues", "radial operators", "unit disk", "complex numbers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.0797S" } } }